If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-20X=300
We move all terms to the left:
X^2-20X-(300)=0
a = 1; b = -20; c = -300;
Δ = b2-4ac
Δ = -202-4·1·(-300)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-40}{2*1}=\frac{-20}{2} =-10 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+40}{2*1}=\frac{60}{2} =30 $
| 2/3x-9=5x+4 | | Y^2-20y-75=0 | | 2c+12=3c | | a=5+2a+3 | | 5(9y-7)=18+4y | | X+2/14=4/7+x-8/9 | | X+1/16=9/8+x-3/6 | | 5x+3=10+7x | | -7.3x-11=-54 | | 9+y=33 | | X/41=1.2k | | 7(p+7)=13-5p | | 16-8k=-9(3k+7) | | 3x+12-x=36 | | 4^3x-6=46 | | -4x+51=2x+7(x+7) | | 35+(x-119)=296 | | 2(x+4)=5+2 | | 9x^2+x-1=x^2+1+7 | | 3(x-11)=8(7-x)-12 | | 24-10b=-9 | | 3x-3+4x+7=8x-12 | | Y^2+3y=48 | | -7x-2=-3-14 | | 9^(x+4)=11 | | 5g+40-7=117-g | | f(5)=30(5)-350 | | x-6+2x-16=14 | | 18x-17=7x137 | | f(1.5)=35(1.5)+150 | | 12=x^2+3x-6 | | 75x12=900 |